
Pompe Oscillante

Le dessin ci-dessous représente une pompe oscillante dont le mouvement d'entrée est la rotation continue du vilebrequin [1] autour de l'axe $(0, \overline{z_0})$. Ce mouvement est transformé en translation alternative du piston [2] par rapport à [3] ce qui permet les phases de compression et d'admission du fluide. La rotation alternative de [3] fait communiquer alternativement la chambre de compression avec les orifices d'admission et de refoulement. Pour simplifier la lecture, le bati [0] n'est pas entièrement représenté, notamment sa liaison avec l'arbre [1].

Hypothèses:

- On considèrera une liaison pivot d'axe $(0, \overrightarrow{z_0})$ entre [1] et [0].
- On considèrera une liaison pivot d'axe $(A, \overrightarrow{z_0})$ entre [2] et [1].

Travail demandé

- 1 Identifier les liaisons entre [2] et [3], puis entre [3] et [0].
- 2 Créer le schéma cinématique de ce mécanisme dans la position du dessin.

On associe au solide [1] une base B_1 telle que $\overrightarrow{OA} = e\overrightarrow{y_1}$. On définit $\overrightarrow{AB} = x\overrightarrow{x_2}$, $\overrightarrow{OB} = l\overrightarrow{x_0}$, et les angles $\alpha = (\overrightarrow{y_0}, \overrightarrow{y_1})$ et $\theta = (\overrightarrow{x_0}, \overrightarrow{x_2})$.

- 3 Déterminer les vitesses suivantes :
 - $\overrightarrow{V_{A \in 1/0}}$ en fonction de $\dot{\alpha}$
 - $\overrightarrow{V_{B\in 2/0}}$ en fonction de $\dot{\alpha}$ et $\dot{\theta}$
 - $\overrightarrow{V_{B \in 2/3}}$ en fonction de \dot{x}
- 4 Par composition des mouvements en B, en déduire la loi entrée/sortie de la pompe : $\dot{x} = f(\dot{\alpha})$